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Synopsis 

Many attempts to correlate steady-state and dynamic rheological data have been reported. Thus 
far, the correlations have not been convincing, particularly for polymer melts that exhibit highly 
non-Newtonian behavior. The purpose of this work was to provide a means for obtaining a useful 
correlation. The Maxwell viscoelastic model was used to correlate data from four different modes 
of shear-two involving steady-state deformation and two involving dynamic deformation. As 
certain defined requirements were met, excellent agreement was obtained for polymer melts that 
represent a wide range of viscoelastic behavior. One of these requirements was that the polymer 
molecule should have a certain degree of flexibility. 

INTRODUCTION 

The flow behavior of polymer melts and solutions is usually determined by 
steady-state deformation measurements made on capillary-extrusion or rotat- 
ing-disk instruments. These measurements are useful because they are con- 
venient and they simulate closely the flow character of polymer melts in com- 
mercial processes. However, these measurements are disadvantageous in at  least 
two respects: separating the viscous and elastic components of deformation is 
difficult, and the range of shear rates available is insufficient for adequate 
characterization. 

Oscillation, or dynamic, measurements provide an easy means of separating 
the viscous and elastic components of polymer melts and of determining shear 
rates of <loA2 to >lo2 rad/sec. Measurements at these low rates of deformation 
and measurements of the elastic as well as the viscous polymer melt flow com- 
ponents are very important in characterizing the polymers used in many appli- 
cations. These low rates also provide data that are useful for molecular and 
morphological characterization. 

No generally accepted method exists for correlating steady-state and dynamic 
rheological data. Reports show that attempts have been made to correlate 
steady-state viscosity with the viscous, or loss, component of the complex vis- 
cosity (q’), the absolute value of the complex viscosity [q*] (the Cox-Merz cor- 
relation), and the viscosity in the Maxwell element; but the data presented thus 
far have not been convincing, particularly for melts that exhibit highly non- 
Newtonian behavior. The purpose of this work was to provide a means for ob- 
taining a useful correlation. 

For this work, we chose four different but commonly used methods for de- 
termining rheological behavior characteristics. These included two steady-state 
methods-one that used the Instron capillary viscometer and one that used the 
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Rheometrics Mechanical Spectrometer rotation of cone and plate-and two 
dynamic methods-both of which used the Mechanical Spectrometer (with the 
cone and plate oscillating in rotation and with eccentric rotating disks). For 
comparison we chose a number of different materials that represent a wide range 
of viscoelastic behavior. 

Unfortunately, some problems are encountered in relating steady-state to 
dynamic data. One problem concerns the relationship between shear rate and 
angular frequency. In dynamic measurements the actual shear rate varies be- 
tween a peak value and zero. This problem has been analyzed by a number of 
workers, and it is generally accepted that if the frequency is expressed in radlsec 
and the amplitude of the oscillation is small, the numerical value is the same as 
the value for the steady-state shear rate expressed in sec-l.l Bueche, Pao, and 
others have developed concepts to explain this agreement, but it should be val- 
idated for different types of tests and materials. 

Another problem that arises in comparing dynamic and steady-state data 
involves the choice of a model for calculating material parameters from measured 
values. Real viscoelastic materials have a broad range of relaxation times. In 
calculating data from measured values, the usual practice is to assume that a 
particular relaxation time is appropriate to a particular frequency or shear rate. 
Measurements made over a range of frequencies permit the appropriate relax- 
ation times to be determined; hence, the relaxation spectrum as well can be de- 
termined. 

The single relaxation time assumed for a particular frequency has two New- 
tonian elements-a viscous element (dash pot with viscosity v )  and an elastic 
element (spring with elastic modulus G). These elements may be assumed to 
be in parallel (Voigt or Kelvin model, where stresses are added) or in series 
(Maxwell model, where strains are added). The relaxation time (7) is v/G, the 
time required in a series or Maxwell system for an applied stress to decay to its 
original value divided by e. The relaxation spectrum is simulated by a number 
of Voigt elements in series or by a number of Maxwell elements in parallel, and 
the results are identical. 

The equations for these models can be written as follows: 

Voigt S = Guy + vui/ 
Maxwell i /  = SIT, + SIG, 

where S and y are the stress and the strain, the dot signifies the derivative with 
respect to time (i.e., i /  = dy ld t ) ,  and the subscripts are u for Voigt and m for 
Maxwell. 

Experience has shown that the viscous and elastic parameters are constant 
if the frequency (or shear rate), the temperature, and the shear history are con- 
stant. Thus, in most conventions the data are presented as plots of 17 and G ,  or 
some similar single parameters as functions of frequency or temperature, or by 
superposition of w and temperature to form a master curve. In these cases, the 
right choice of model will be determined by its purpose. 

Our purpose was to correlate data from four different measuring techniques. 
It is obvious that a single Voigt model can respond as either a fluid or a solid in 
oscillatory testing under limited strain; but in a steady-state deformation the 
Voigt model cannot give a normal fluid response if the elastic component is sig- 
nificant, since the stress will increase with strain as well as with i / .  Conversely, 
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a single Maxwell model can respond as a fluid in either an oscillatory or a 
steady-state deformation. The Voigt model is usually chosen for solidlike be- 
havior because of its characteristic small deformation of a damped or retarded 
spring. The Voigt model may also be applicable to certain transitory behavior 
of fluids. The Maxwell model is most useful for liquids or melts because of its 
characteristic of being able to undergo infinite deformation with partial elastic 
recovery. Thus, for comparison of oscillatory data with steady-state data in such 
plots the single Maxwell model is more appropriate than the single Voigt model 
because a steady-state deformation must be Maxwellian, whereas dynamic or 
transitory deformation can be either Voigtian or Maxwellian. 

The dynamic properties of fluids are commonly measured by using a cone- 
and-plate rheometer. One platen is oscillated in rotation, so that variations in 
shear strain as a function of time are described by a sine curve and an equation 
of the following form: 

Yt  = YO sin(wt) 
where y t  is the strain at  time t ,  yo is the maximum amplitude of strain, and w 
is the frequency of oscillation in rad/sec. 

Then the rate of strain is as follows: 

i, = you cos(w,) 
The part of the stress that is in phase with the strain is related to the elastic re- 
sponse-the part in phase with the rate of strain is related to the viscous response. 
The actual stress then is shown by the following equation, where 6 is the phase 
angle (0-90’) by which the stress leads the strain: 

St = So sin(w + 6) 
These equations, combined with those for the Voigt and Maxwell models, yield 
the equations for calculating model parameters from dynamic data: 

Voigt 

7, = (So/yow) sin 6 = 7’ 
(So/yo) sin6 = G” 

G, = (SO/YO) cos 6 = G‘ 
Maxwell 

G, = SO/YO cos 6 
7, = So/yOw sin 6 

These equations are consistent with those of Ferry1 and Benbow et a1.2 Note 
that the familiar dynamic parameters G‘ and 7’ are equivalent to the Voigt-model 
constants. The Voigt- and Maxwell-model equations are similar in form except 
that their trigonometric parts are reciprocally related. (Details of one method 
of derivation are shown in Appendix A.) These equations can be derived in a 
variety of ways, and equations can be derived for sinusoidal oscillation without 
recourse to a particular model. Then groups may be taken from these generalized 
equations to calculate material parameters. However, if the equation is essen- 
tially in the form of a summation of stresses, Voigt-type equations are obtained. 
The familiar G* = G’ + iG” is an example. If the equation is in the form of a 
summation of strains or rates of strain, Maxwell-type equations are obtained. 

A relatively new method for measuring dynamic properties of materials em- 
ploys eccentric rotating disks (ERD). Bryce Maxwell suggested this method, 
and he and others developed it further. By this method, a sample fills a small 
gap between two disks with parallel faces that are free to rotate on the same axis, 
and the axis is perpendicular to the disk faces. One disk is driven in rotation 
and the other is free to rotate on a frictionless bearing (air). 
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Under these conditions, no force is generated on the freely rotating disk. 
However, if a slight offset in the axis is induced during rotation, a force will de- 
velop. The component of the force parallel to the direction of the offset, F,, is 
proportional to the elastic component. The component of the force perpen- 
dicular to the direction of offset (Fy, parallel to the face) is proportional to the 
viscous component. The equations taken from the Rheometrics manual and 
Macosko3 for calculating Voigt parameters are as follows: 

G, = F,h/rR2a = G' 

q, = Fyh/wrR2a = 9' = GN/w 

q,w/G, = Fy/F, = tan6 = r w  

where h is the distance between the disks, and R is the radius of the disks. 
Equations for calculating Maxwell parameters from ERD data can be derived 

by combining the equations for sinusoidal oscillation with the equations for the 
Voigt parameters. The equations for calculating Maxwell parameters are as 
follows: 

FXh 
rR2a  cos2 tan-'(F,lF,) 

Fyh 
wrR2a sin2 tan-l(Fy/F,) 

N2/N1 = F,h/2Fya 

G, = 

9, = 

N1 = 2S2/G, = (q,~)~2/G, 

where N1 and N Z  are the first and second normal-stress differences, and F, is 
the normal force measured during testing. 

The ERD testing produces a massaging shear that has a number of advantages 
over normal oscillation. However, appropriate corrections for instrument 
compliance should be made as needed. 

EXPERIMENTAL 

The capillary extrusion data were obtained by using an Instron capillary 
rheometer. Corrections were made for end effects, barrel resistance, and non- 
parabolic-flow profiles, where applicable. The rotational, oscillation, and ERD 
data were obtained by using a Rheometrics Mechanical Spectrometer and fol- 
lowing normally prescribed methods. In all cases, the calibrations were made 
by measurement of geometric dimensions and by dead-weight calibration of 
force-measuring meters in the equipment, not by using a calibrating material 
such as a National Bureau of Standards fluid. Thus there were no arbitrary 
adjustable parameters or calibration constants. Corrections for instrument 
compliance and inertial effects were made as needed. 

The specific materials used are described briefly in the discussion. Care was 
taken to minimize the effects of degradation and oxidation. 
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DISCUSSION 

Figure 1 shows the rheological data obtained from all four methods on a sample 
of Tenite 800 (Kodak) polyethylene. This low-density polyethylene is highly 
shear sensitive and viscoelastic; therefore, it represents a very stringent test of 
the correlation. This figure shows only three to four decades where the data from 
the different methods overlap. It is obvious that the dynamic values calculated 
by using the equations from the Maxwell model ( q m )  correlate very well with the 
steady-state data: there are four different types of points on the same viscosity 
curve. 

The Voigt-parameter plots (7") shown by the dashed curves occur at  lower 
values, and they do not agree with the Maxwell parameters or the capillary data. 
Complex viscosity values lie about halfway between the Voigt and the Maxwell 
curves, thus not agreeing with either. To prevent clutter, data points are not 
shown on the Voigt curves; but the scatter would be similar to that of the Maxwell 
values, since the Voigt values are calculated from the same raw data. The fit 
of the data points plotted on the original drawing of this graph was better than 
the fit shown here. 

Figure 2 compares data from testing "Bouncing Putty" silicone rheological 
material, a highly viscoelastic demonstrator sample supplied with the Rheo- 
metrics Mechanical Spectrometer. Insufficient sample was available for Instron 
testing, but the other three methods showed excellent agreement. 

Figure 3 compares data from testing a copolymerization-modified poly(eth- 
ylene terephthalate) (PET). The data correlate well only for Maxwell-model 
calculations. 

Figure 4 compares data from testing branched and modified PET. Branching 
was achieved by copolymerization with a few tenths percent of trifunctional acid. 
Again the Maxwell data correlate well. 

Figure 5 compares these same linear and branched polyesters, which had about 
the same average melt viscosity and IV (inherent viscosity). These curves show 
the effect of branching. Note that the branched material is more shear sensitive 
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Fig. 1. Rheological properties of "Tenite" 800 polyethylene at 180OC; (0) RMS eccentric rotating 

disks (ERD); (A) RMS cone + plate (steady state) (CPS); (0) RMS cone + plate (oscillation) (CPO); 
(B) Instron capillary rheometer. 
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Fig. 2. Rheological properties of RMS demonstrator sample (“Bouncing Putty” silicone) at 24°C. 

Symbols as in Fig. 1. 

and has a lower G,, thus showing more elasticity, particularly a t  lower shear 
rates, or frequencies than the linear material. 

Figure 6 compares Instron and ERD data on a sample of unmodified PET that 
is sensitive to degradation at  temperatures required for rheological measure- 
ments. This melt is fairly Newtonian in behavior. 

Figure 7 compares data from testing a liquid-crystal copolymer of PET and 
p -  hydroxybenzoic acid. Note the approach to an upper Newtonian region not 
often seen in polymer melts. The low value of G, a t  low rates indicates a long 
relaxation time. 

Other materials that give good agreement for the four methods include samples 
of bisphenol A polycarbonate and Delrin acetal thermoplastic. 
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Figure 8 compares capillary and ERD viscosity values for two hot-melt ad- 
hesives. For sample A the data agree quite well. Data from the two methods do 
not agree for sample B. During capillary-extrusion testing on sample B, severe 
melt fracture occurred, particularly a t  high shear rates. This fracture mechanism 
reduced the extrusion force; thus the calculated values for the viscosity are 
spuriously low. This discrepancy, however, is expected. The test results indicate 
that measurements in the shear-rate region of melt fracture can be made more 
accurately by a dynamic method than by a steady-state method. 

Figure 9 shows that the effect of strain amplitude on the calculated parameters 
is very small. Each tag on a data point shows the different amplitudes tested. 
The range was from a strain of 0.05 to 0.5. 

The data presented thus far were obtained on materials that represent a wide 
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Fig. 5. Comparison of rheologicd properties of linear (---a) and branched (-) polyesters. 
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range of rheological behavior. Bueche4 suggested that polymers composed of 
very stiff rodlike molecules may not give good agreement in comparing steady- 
state shear rate with dynamic frequency. The polymers discussed thus far in 
this work were composed of very flexible to only moderately stiff molecules. 
Characteristic ratios, a measure of chain stiffness, were seven or less. (The 
characteristic ratio is the ratio of the mean-square end-to-end distance of a 
molecule to the product of the number of bonds and the square of the bond 
length.) 

Figure 10 compares capillary and ERD data for polystyrene, which is composed 
of fairly stiff molecules and has a characteristic ratio of about 10. No melt 
fracture was observed. The disagreement is obvious. The lower plot of capillary 
data falls about where a plot of the absolute value of the complex viscosity would 
lie. This may account for some of the correlations found in earlier work, since 
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SHEAR RATE, SEC-' OR RAD/SEC 

Fig. 7. Rheological properties of liquid-crystal polyester at 26OOC. Symbols as in Fig. 6. 
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Fig. 8. Viscosities of two hot-melt adhesives; sample A(B), capillary extrusion 0 (A), ERD 0 
(A). 

polystyrene has been used extensively as a standard material for rheological 
measurements. Data for qu or q’ fall well below the capillary data. 

Figure 11 shows test results for cellulose acetate butyrate, which has a char- 
acteristic ratio of about 15, indicating very stiff molecules. The discrepancy here 
is even greater than for polystyrene. Plots of q* and vU do not agree with any 
of the other data. 

Plasticized cellulose acetate gave test results similar to those for cellulose ac- 
etate butyrate. It is obvious that the agreement breaks down for these stiff- 
molecular polymers. However, the largest disagreement is not between dynamic 
and steady-state flows but in the geometry of the flow. The capillary-flow data 
are much lower than the data from the other three methods. There was no ob- 
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Fig. 9. Effect of strain amplitude on rheological properties of Tenite 800 polyethylene at 180°C. 
Strain amplitude: (9)  0.5; (0) 0.3; ( 0 3  0.2; (6) 0.1; (b) 0.05. 
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Fig. 10. Rheological properties of polystyrene at 240°C. Symbols as in Fig. 1. 

vious melt fracture involved in the capillary testing, and the elongational part 
of the flow would not be expected to be significant because of the large length- 
to-diameter ratio (LID values of 7-160 were used). There is also a difference 
between ERD data and oscillating cone-and-plate data. Steady-state cone- 
and-plate data are close to oscillating cone-and-plate data. I t  does not appear 
that a simple horizontal shift on the w axis would cause the data to agree. 

A paper was recently published by Bonnebat and Devries5 that gave poly(viny1 
chloride) (PVC) dynamic and capillary data that agree by use of the Cox-Merz 
correlation. Our data on PVC agree with these results at frequencies below 60 
radhec. A t  higher frequencies the dynamic and capillary data diverge. This 
agreement indicates behavior similar to that of polystyrene. The characteristic 
ratio of PVC is about 7.5, which is lower than that of polystyrene. However, the 
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Fig. 11. Rheological properties of cellulose acetate butyrate at 230OC. Symbols as in Fig. 1. 
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PVC melt is known to be complex, with crystal-like domains which may behave 
like fairly rigid molecules. 

The reasons for these differences are not yet apparent. However, it is obvious 
that when long, stiff molecules, or domains, are involved, the geometry of the 
flow in the measuring instrument must be carefully considered. Attempts should 
not be made to characterize a rotational process with extrusion data. Thus the 
apparent viscosity in an extruder screw may not be the same as that in a die. 

Elastic-modulus values calculated from the two dynamic methods agree quite 
well, as shown in the figures. The theory and methods of calculation are 
straightforward. However, such values calculated from normal forces, die swell, 
and end effects do not agree well, probably because the theories relating these 
measurements to a modulus are inadequate. 

The testing reported here shows that viscosity measurements on polymer melts 
by these four methods-Instron capillary rheometer, rotating cone and plate, 
oscillation of cone and plate, and ERD eccentric rotating disks-produce the 
same results, provided that the following conditions are met: 

(1) Measurements are made within the appropriate operating range of each 
method. 

(2) Results are compared at the same shear rate in reciprocal sec and frequency 
in rad/sec. 

(3) Strain amplitudes are about one (or less) for dynamic measurements. 
(4) Results are calculated on the basis of the same model, preferably the 

( 5 )  Long, very stiff molecules are not involved. 
The correlations observed here have also been observed by several other 

workers in this laboratory and by workers in other laboratories within the com- 
pany. It is interesting to speculate on what these correlations might tell us about 
flow mechanisms and the structures of flexible- and rigid-chain polymers; about 
plasticized or antiplasticized systems; about polymers filled with various types 
of pigments, pigments of different consistency, and pigments of different shapes 
(spheres, rods, plates); about different degrees of interaction, such as reinforcing 
versus nonreinforcing pigments; and about polymer blends. 

Maxwell system of additive strains of viscous and elastic components. 

The authors acknowledge the helpful discussions with Professor D. C. Bogue of the University 
of Tennessee, Knoxville, and Dr. L. D. Moore and Mr. C. R. Crim of the Tennessee Eastman Research 
Laboratories. 

APPENDIX A 

Derivation of the equations for calculating the parameters G, and q ,  for the Maxwell model have 
caused some problems for rheologists, so the methods are summarized here. Equations for the Voigt 
parameters G, and qu can be derived similarly. Clearly, G, and q, are not G’ and 7’ but the values 
of the modulus and the viscosity of the elements of the model and are assumed constant at a constant 
frequency w. This requirement meets experimental conditions in most cases. Also 6 is constant 
a t  constant w. However, G,, q,, and 6 can change with a frequency change, just as steady-state 
viscosity changes with a shear-rate change. 

The equation for the Maxwell model is 
-=- dyt dstldt +% 
dt G m  tm 

where yt and St are the strain and stress a t  any time ( t ) .  
For sinusoidal deformation, the following equations can be used 
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St = SO sin(wt + 6) 

-= dSt sow cos(wt + 6) 
dt 

where y o  and SO are the maximum amplitudes of the strain and stress curves, and 6 is the phase angle 
by which SO leads yo. 

By combining eqs. (2b), (2c), and (2d) with eq. (l), we get 
wS0 cos(wt + 6) SO sin(wt + 6 )  

wyo  cos(wt) = + (3) 
G m  7)m 

Since these equations hold for any t (providing, of course, that t is large enough so that the si- 
nusoidal deformation has reached an equilibrium behavior), we can choose t so that (wt + 6) = 0; 
thus, w t  = - 6  and cos(-6) = cos 6 .  Therefore, 

wyo cos 6 = SowIG,,, + 0 and G, = (Solyo) (llcos 6 )  (4) 

oyo sin 6 = 0 + SO/?, and qrn = (Solyou) (Usin 6 )  (5) 

Likewise, we can set w t  + 6 = 90°, so that wt = 90' - 6 and cos(9Oo - 6 )  = sin 6 ,  then 

We can also set wt = SOo and get 

tan 6 = Gm/wvm = l / w T m  (6) 
To check this derivation another way, we can take the equation for the Maxwell model and convert 
it to the form 

dSldt S 
wyo cos wt  = - +- 

G m  GmT 

Solving for S by integration and letting t be large enough to provide an equilibrium sine curve, we 
get 

Substituting the values for G, and 7 ,  from eqs. (4) and (6)  with no constraints on t ,  we get 

St = SO sin(wt + 6 )  

which is identical to eq. (2c). 

APPENDIX B 

The derivation of equations for calculating Maxwell constants from ERD measurements is as 

lu = Fyh/wirR2a and G, = F,h/irR2a (8) 

7, = (Solyou) sin 6 and qm = Solyou sin 6 (9) 

follows3: 

(these symbols are defined in the text and the glossary, Appendix C. Also, 

By combining eqs. (8) and (9), we get 

wtl,/G, = FJF, = W T ,  = tan 6 (10) 

and 

6 = tan-l(F,/F,) 

Combining with eq. (9) gives 

q,,, = qu /sin2 6 
Combining eqs. (12), (8), and (11) gives 

FYh = wirR2a sin2 tan-'(F,/F,) 
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Similarly, 

F x  h G, = 
aR2a cos2 tan-’(F,/F,) 

APPENDIX C: GLOSSARY OF SYMBOLS 

1353 

(14) 

shear stress, derivative of shear stress, shear stress a t  time t ,  peak stress in a 
sinusoidal deformation 
strain, rate of strain, strain a t  time t ,  peak strain in a sinusoidal deformation 
viscosity, viscosity of Maxwell element, viscosity of Voigt element 
complex viscosity, absolute value of complex viscosity 
real and imaginary parts of complex viscosity 
modulus, modulus of Maxwell element, modulus of Voigt element 
complex modulus, absolute value of complex modulus 
real and imaginary parts of complex modulus 
relaxation time q/G 
difference in phase between stress and strain in sinusoidal dynamic plots 
time 
temperature 
forces measured in x direction, y direction, and z direction 
distance between platens (Gap) 
distance of axis offset between platens 
frequency (rad/sec) 
first and second normal stress differences 
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